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Traveling fronts can become transversally unstable either because of a diffusive instability arising when the
key variables diffuse at sufficiently different rates or because of a buoyancy-driven Rayleigh-Taylor mecha-
nism when the density jump across the front is statically unfavorable. The interaction between such diffusive
and buoyancy instabilities of fronts is analyzed theoretically for a simple model system. Linear stability
analysis and nonlinear simulations show that their interplay changes considerably the stability properties with
regard to the pure Rayleigh-Taylor or diffusive instabilities of fronts. In particular, an instability scenario can
arise which triggers convection around statically stable fronts as a result of differential diffusion. Moreover,
spatiotemporal chaos can be observed when both buoyancy and diffusive effects cooperate to destabilize the
front. Experimental conditions to test our predictions are suggested.
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Propagating fronts are common in nature and can be ob-
served in a wide variety of applications ranging from chemi-
cal systems, combustion, biology, and epidemiologic or
population systems. They appear typically when an autocata-
lytic process coupled to diffusion is taking place. The cubic
autocatalytic reaction A+2B→3B between a reactant A and
autocatalyst B, has been used extensively as a prototype for
describing such reaction-diffusion �RD� fronts �1–4�. When
the two key species A and B diffuse at similar rates, the front
remains planar. If, however, the autocatalyst B diffuses more
slowly than the reactant A, the front can lose stability to
transverse perturbations �2–4�. It then develops cellular de-
formations with a wavelength of the order of cm on long
diffusive time scales typically of a few hours. This has been
observed experimentally using gels soaked with reactants so-
lutions containing also large molecules binding the autocata-
lyst to slow down its effective diffusivity �5,6�. Traveling
fronts can also become unstable through a buoyancy-driven
Rayleigh-Taylor �RT� instability when the density of the re-
actant is different to that of the products across the front
�7–17�. If the heavy solution lies on top of the lighter one in
the gravity field, a convective fingerlike deformation of the
front can then occur on a faster convective time scale of the
order of minutes and with a wavelength in the mm range, as
is observed experimentally in vertical Hele-Shaw cells
�11–15�. By increasing the tilting of the reactor towards the
horizontal �13� or increasing uniformly the viscosity of the
solution �15�, it is possible to slow down the time scale of the
RT instability. If the diffusion coefficients of the key vari-
ables are such as to allow for a diffusive instability, it could
be expected that the convective and diffusive modes act over
similar time scales and interact. Previous theoretical work
has analyzed diffusive instabilities on the basis of two-
variable RD equations in absence of any convection �2–5�.
RT fingering of fronts has also been analyzed theoretically
on the basis of classical one-variable RD-convection �RDC�
models �8–10,16,18� thus excluding the possibility of the
differential diffusion effect. Recently, numerical analysis of

the influence of differential diffusion on RT fingering has
been addressed using a two-variable RDC model but only
when the reactant diffuses faster than the autocatalyst, which
also excludes diffusive instabilities �17�.

In this context, we show here theoretically that the inter-
action between buoyancy and diffusive instabilities can dras-
tically change the stability and nonlinear properties of a RDC
system with respect to the “pure” instabilities considered
separately. The coupling between convective and differential
diffusive effects can even destabilize an otherwise stable
front. Furthermore, when the front features a buoyantly un-
stable density stratification along with conditions allowing
for a diffusive instability, the interplay between the unstable
RT and diffusive modes can lead to spatiotemporal chaos.
Experimental conditions in which our predictions could be
tested are proposed.

Our model consists of a two-dimensional system in which
an isothermal RD front resulting from the coupling between
the autocatalytic reaction A+2B→3B and diffusion is trav-
eling in the x direction pointing against gravity, y being the
transverse coordinate. Initially, ahead of the reaction front A
is present, at uniform concentration a0. It is converted fully
into B leaving the product also at a0. The evolution of the
concentrations a and b of species A and B obey RDC equa-
tions written, using the standard Boussinesq approximation
�10�, as

�� · u� = 0, �� p = −
�

K
u� − ��a,b�ge�x, �1�

�a

�t
+ u� · �� a = DA�2a − k0ab2, �2�

�b

�t
+ u� · �� b = DB�2b + k0ab2, �3�

together with an equation of state ��a ,b�=�0+�1a+�2b.
Here ��a ,b� is the density of the solution containing the
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solutes a and b, �0 is the fluid density of water, and �1,2 are
the positive solutal expansion coefficients of species A and
B. The flow velocity u� = �u ,v� is described by Darcy’s law
�1� valid in porous media or in thin Hele-Shaw geometries. p
denotes the pressure, g is the acceleration of gravity, � the
viscosity, K the permeability, and e�x is the unit vector in the
x direction. DA and DB are the diffusion coefficients of A and
B, while k0 is the kinetic constant.

In absence of flow �u� =0� and for the chosen kinetics, if
D=DB /DA�Dc, with Dc�0.424, the planar RD front be-
comes diffusionally unstable �2–4�. The front can also be-
come unstable through a RT instability in the presence of an
unfavorable density stratification. If the reactants are heavier
than the products, �1��2 and upward propagating fronts are
buoyantly unstable, while fronts propagating downwards re-
main planar. The reverse is true if �1��2 �18�.

To analyze the stability of the system in parameter ranges
where these two mechanisms generating a transverse insta-
bility act on comparable time and length scales, we first non-
dimensionalize equations �1�–�3� using the characteristic re-
action time T0=1/k0a0

2, length L0=�DAT0, and velocity U0
=�DA /T0. Density is scaled by ��= ��1−�2�a0. This leads to
the dimensionless equations

�2� = − �Raay + Rbby� , �4�

at + �yax − �xay = �2a − ab2, �5�

bt + �ybx − �xby = D�2b + ab2, �6�

where we have introduced the stream function � defined by
u=�y and v=−�x �10,17� and where the index means deriva-
tive with regard to that variable. Here

Ra,b =
a0Kg�1,2

�U0
=

Kg�1,2

��DAk0�1/2 . �7�

If �1��2, we have, from Eq. �7�, that Ra�Rb and ascending
fronts are buoyantly RT unstable. Fronts traveling down-
wards are convectively unstable if Ra�Rb.

Initially a=1, b=0, and �=0 �no flow� with a local hori-
zontal input of B to start the reaction. This leads to a pair of
counterpropagating RD fronts, which are the base states for a
linear stability analysis �LSA�. We introduce the traveling
coordinate 	=x−ct, where c is the constant RD front speed,
and look for a solution of Eqs. �5� and �6� with �=0 in the
form a=a�	� ,b=b�	�. The traveling front equations in the
absence of flow are

a		 + ca	 − ab2 = 0, Db		 + cb	 + ab2 = 0 �8�

subject, for upward propagating front, to �a ,b�→ �1,0� as
	→
, and �a ,b�→ �0,1� as 	→−
 and conversely for the
downward propagating ones. The solution to Eqs. �8� deter-
mines the RD front speed c, with c increasing �decreasing� as
D is increased �decreased�. To consider the stability of the
fronts with regard to transverse fluctuations, we perturb this
base state by small perturbations of the form �A ,B ,��
=e�t+iky�A0�	� ,B0�	� ,�0�	��. This leads to an eigenvalue
problem for �A0 ,B0 ,�0� in terms of the growth rate � and the

wavenumber k of the perturbations, subject to A0→0,
B0→0,�0→0 as 	→ ±
.

Dispersion curves, plots of � against k, are obtained for
given values of Ra, Rb, and D using standard numerical tech-
niques �4�. Figure 1 shows dispersion curves for the RT and
diffusive instabilities and for the case where they interact
when Ra�Rb. The parameters are chosen so that the growth
rates for the two limiting cases are of the same order of
magnitude. For D=1, ascending fronts where heavier A lies
on top of lighter B are buoyantly unstable while descending
fronts are stable. If Ra=Rb=0 but D=0.15�Dc, both fronts
are diffusively unstable. Figure 2 presents the corresponding
nonlinear cellular deformation of the ascending RT fingered
front �Fig. 2�a�� and of the diffusively unstable one �Fig.
2�b��. These are obtained by numerical integration of Eqs.
�4�–�6� using a pseudospectral technique �10,19� with peri-
odic boundary conditions in both directions in a system of
dimensionless width Ly =512. In the case of the buoyantly
induced fingering, convective vortices are at the origin of the
transverse deformation and ��0. Though RT fingering of
fronts is known to feature tip splitting in some cases
�10,12,14,17�, the nonlinear dynamics is characterized for
the Ly and small Rayleigh numbers chosen here by a general
coarsening trend. This coarsening is captured on Fig. 2�a� by
a plot of the extrema of the transverse averaged concentra-
tions �10�. Starting with five fingers the wavelength of which
is in agreement with the LSA �see Fig. 1�, the RT dynamics
feature merging of fingers leading to one final single finger
�Fig. 2�a�� �10,14,17�. The descending front for which the
density stratification is stable remains planar. The diffusive
cellular deformation �Fig. 2�b�� affects both ascending and
descending fronts in the same way with a wavelength smaller
than for the RT case in agreement with the larger, most un-
stable wave number predicted by the LSA �Fig. 1�. There is
no flow in this case ��=0� and the dynamics are purely
diffusive. Chaotic dynamics can result from diffusive insta-
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FIG. 1. Dispersion curves for �dotted curve� the RT instability of
an ascending front �Ra=0.5, Rb=0.25, D=1�; �full curve� the diffu-
sive instability �Ra=Rb=0, D=0.15�; and the mixed case �Ra=0.5,
Rb=0.25, D=0.15� for ascending �dashed curve� and descending
�bold curve� fronts.
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bilities in large systems and small D �2,3�, however, here the
nonlinear dynamics are characterized for Ly =512 and
D=0.15 by weak interactions between fingers �Fig. 2�b��.

When Ra�Rb and D=0.15, the LSA shows that both as-
cending and descending fronts are unstable, the latter having
the largest growth rate �Fig. 1�. Nonlinear simulations con-
firm these trends: for ascending fronts �Fig. 3�a��, the initial
wavelength is smaller �larger most unstable wavenumber in
the LSA, see Fig. 1� and the dynamics are characterized by
coarsening of fingers in time. For descending fronts, differ-
ential diffusion is destabilizing the otherwise buoyantly

stable front which features a smaller wavelength and a more
irregular succession of birth and death of fingers in the non-
linear regime �Fig. 3�b��. To understand this, consider the
displaced particle argument shown in Fig. 4 for the down-
ward propagating front. A perturbation ahead of the front fills
in faster with heavier A than losing lighter B when
DB�DA. Thus the perturbation becomes heavier than the
surrounding fluid containing only A and hence continues to
sink driving an instability of the otherwise buoyantly stable
density stratification. Similarly, a perturbation behind the
front loses heavier A by diffusion more than gaining lighter
B, hence the perturbation is lighter than its surroundings and

� �

FIG. 2. Nonlinear dynamics of �a� the RT instability �Ra=0.5,
Rb=0.25, D=1�. Only the upward propagating front is unstable
with regard to buoyancy-driven flows ���0�; �b� the diffusive in-
stability �Ra=Rb=0, D=0.15, �=0�. The ascending and descending
fronts have similar dynamics so we focus here only on the ascend-
ing one. On top, a zoom on the deformed front shows the concen-
tration a in a scale ranging from white �a=0, product� to black
�a=1, reactant� at time t=7500 in a box of dimensionless width 512
and height 200. The lower panel shows a space-time map of the
position of maxima �black� and minima �grey� of transverse aver-
aged profiles from t=0 �top� to t=7500 �bottom�.

� �

FIG. 3. Same as Fig. 2 with Ra=0.5, Rb=0.25, D=0.15 except
that the height of the density plot is here 300 in part �a� and 200 in
part �b�. Both the upward �a� and downward �b� propagating fronts
are deformed by convective flows.
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FIG. 4. Displaced particle argument explaining how differential
diffusion between the lighter product B and the heavier reactant A
can destabilize a downward propagating front featuring a statically
stable density stratification. The dotted arrows represent the faster
diffusion of A compared to the slower diffusion of B �full arrows�.
The bold arrow shows the direction of propagation of the front.

FIG. 5. Same as Fig. 2 with Ra=0.25, Rb=0.5, D=0.15. Only
the downward propagating front is unstable. The system features
complex dynamics due to the interaction of RT and diffusive insta-
bilities, which are both destabilizing.
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can rise. This mechanism is related to solutal double-
diffusive effects �20,21� with, however, the dynamics being
influenced by the diffusive instability when ��→0. It is re-
inforced by the fact that the RD speed c decreases with D,
which favors the development of buoyant flows.

For upward moving fronts, a similar displaced particle
argument predicts a stabilizing effect of differential diffusion
on the RT instability while the slower RD speed c when D
decreases, on the contrary, favors it. These competing effects
lead to a nonmonotonous dependence of the most unstable
growth rate when D is lowered below 1. The fact that
DB�DA is thus having a complex influence on the RT un-
stable ascending front and is able to trigger convection
around a descending front that is buoyantly stable for D=1.
Arguing along similar lines shows that, if Ra�Rb, i.e., the
product B is now heavier than the reactant A, the fact that
DB�DA will on the contrary reinforce the stability of buoy-
antly stable ascending fronts and the instability of RT un-
stable descending fronts. This is fully borne out by linear
stability calculations performed for Ra�Rb and D=0.15.
Negative growth rates are obtained for ascending fronts,
while enhanced destabilization with regard to the pure diffu-
sive dispersion curve is obtained for descending fronts. Fig-
ure 5 shows that, in the nonlinear regime, this interplay be-
tween both destabilizing RT and diffusive modes results in
spatiotemporal chaotic dynamics characterized by complex
interactions, merging, and tip spitting of fingers.

In summary, we have shown theoretically that the inter-
play between diffusive and RT instabilities of fronts can af-
fect the stability and nonlinear properties of the system. A
convective instability of a statically stable descending front
can be induced if the two components diffuse at different
rates. Spatiotemporal chaos of descending fronts is obtained
when convective and diffusive modes are both destabilizing.
Experimental demonstration of the predicted instability sce-
narios and dynamics could be tested using, for example, the
autocatalytic iodate arsenous acid �5,11,12� or the chlorite-
tetrathionate �6,13,14� reactions. Both reactions have been
used in the past to study separately cellular deformations due
to diffusive instabilities in gels �5,6� or RT fingering in ver-
tical Hele-Shaw cells �11–15,18�. We now propose to ana-
lyze their dynamics in the presence of the large molecules
binding the activator used in Refs. �5,6� to obtain D�Dc.
The dynamics should, however, be studied not in gels but in
aqueous solutions contained in Hele-Shaw cells slightly in-
clined to the horizontal or containing a chemically inert vis-
cous solute. This would slow down the buoyant flows to
bring their characteristic time scales down to those necessary
for them to interact with the diffusive modes.
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